Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 919
Filter
1.
Article | IMSEAR | ID: sea-218094

ABSTRACT

Background: Hypertension is consistently related to the development of ischemic heart disease, heart failure, stroke, and chronic kidney disease. Oxidative stress has been associated with mechanisms of hypertension which could be nullified by antioxidants such as Vitamin C and Vitamin E. Aim and Objectives: The objectives of the study are as follows: (i) To estimate the impact of antioxidant therapy on antioxidant capacity in hypertensive patients; (ii) to measure serum levels of glutathione, glutathione peroxidase (GPx), glutathione reductase (GR), and superoxide dismutase (SOD) in hypertensive patients before and after giving them antioxidant therapy for 45 days. Materials and Methods: Thirty randomly selected hypertensive patients were given Supradyn tablet once a day for 45 days. Ferric reducing ability of plasma (FRAP), SOD, GR, GPx, and reduced Glutathione assays were measured before and after the intervention therapy. Results: Total antioxidant capacity as measured by serum FRAP in hypertensive patients before and after the therapy was increased significantly from 578.8 ± 60.85 to 592.1 ± 59.66 (?mol/L), respectively. The levels of SOD, GPx, GR, and Glutathione in hypertensive patients before giving antioxidant therapy were 1.6 ± 0.49 U/ml, 184.6 ± 17.1 ?mol/L/min, 8.96 ± 1.15 ?mol/L/min, and 8.03 ± 0.96 ?mol/g of Hb, respectively. The same after giving them antioxidant therapy were 1.7 ± 0.46 U/ml, 182.4 ± 15.98 ?mol/L/min, 8.83 ± 1.11 ?mol/L/min, and 7.83 ± 0.94 ?mol/g of Hb, respectively. The levels of GPx, GR, and Glutathione were significantly decreased after giving antioxidant therapy for 45 days while SOD level did not change significantly. Conclusion: Antioxidant therapies for 45 days led to a significant increase in total antioxidant capacity as shown by plasma FRAP levels and a significant decrease in serum levels of enzymatic antioxidants such as GPx, GR and Glutathione in hypertensive patients. However, serum levels of SOD did not show a significant change.

2.
Article in English | LILACS-Express | LILACS | ID: biblio-1535906

ABSTRACT

Introduction: Tuberculosis is an infectious disease that can be prevented and cured, but it is still associated with high morbidity and mortality rates. Disseminated tuberculosis, although rare, can occur in individuals with underlying pathologies that affect the immune system. Currently, there are limited reports on disseminated tuberculosis in individuals with congenital disorders. Clinical case: We present a case of a patient with a history of ß thalassemia who was admitted to the emergency department with symptoms of abdominal pain and constitutional symptoms. The final diagnosis was disseminated tuberculosis. This case is of particular interest due to its atypical presentation, the initial suspicion of malignancy, and the extensive involvement of the disease despite the patient's absence of immunosuppression history. Conclusions: Disseminated tuberculosis in immunocompetent patients is a rare presentation associated with poor outcomes. The history of ß thalassemia may be a risk factor to consider based on the metabolic pathways involved in the pathophysiology of both diseases.


Introducción: la tuberculosis es una enfermedad infecciosa prevenible y curable asociada a una alta morbimortalidad, la presentación de tuberculosis diseminada es poco frecuente y está asociada a patologías que comprometen el sistema inmunitario. En la actualidad hay pocos informes sobre tuberculosis diseminada y trastornos congénitos subyacentes. Caso clínico: paciente con antecedente de talasemia ß que ingresó al servicio de urgencias por dolor abdominal y síntomas constitucionales con diagnóstico final de tuberculosis diseminada. Es un caso de especial interés debido a la presentación atípica, la sospecha diagnóstica inicial de malignidad y el amplio compromiso de la enfermedad a pesar de que el paciente no tenía antecedentes de inmunosupresión. Conclusiones: la tuberculosis diseminada en el paciente inmunocompetente es una presentación poco frecuente asociada a desenlaces adversos. El antecedente de talasemia ß podría ser un factor de riesgo para tener en cuenta con base en las vías metabólicas involucradas en la fisiopatología de ambas enfermedades.

3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 117-126, Mar.-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439560

ABSTRACT

Objective: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. Methods: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. Results: GSH levels were significantly reduced and, conversely, GPx activity was higher among patients than controls. GCLC_GAG-7/9 genotype (OR = 4.3, 95%CI = 1.40-14.31, p = 0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR = 6.09, 95%CI = 1.93-22.59, p = 0.003) were found to be risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or metabolic ratio. Conclusions: GCLC variants were associated with the oxidative stress profile of patients with psychotic disorders, raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.

4.
Article | IMSEAR | ID: sea-217964

ABSTRACT

Background: Diabetes, hypertension, obesity, and dyslipidemia, all are the risk factors of metabolic syndrome (MS). Various studies have shown that each risk factor is associated with increased inflammation. hsCRP is a non-specific, sensitive inflammatory marker that is raised in various inflammatory conditions. Similarly, glutathione is an antioxidant which binds with ROS produced during inflammation and reduces damage caused by ROS. Aims and Objectives: This study has been planned to find the correlation between oxidative stress and metabolic risk factors in apparently healthy adults. Materials and Methods: We recruited apparently healthy adults (n = 120) and measured waist circumference, blood pressure, lipid profile, Fasting blood sugar, serum GSH, and hsCRP in all the subjects. Seventy-seven subjects were found to have at least one or more metabolic risk factors (Group A) according to NCEP ATP III criteria with waist circumference >90 cm for male and >80 cm for female and 43 were without any metabolic risk factors (Group B). Thereafter, we compared the serum levels of hsCRP and serum GSH with persons having one or more risk factors for MS. Results: In this study, we observed that subjects with metabolic risk factors were having more oxidative stress indicated by increased hsCRP (4783.1 ± 2060.21) and low serum GSH (3.17 ± 0.81) in comparison to controls (1640.5 ± 547.47 and 4.79 ± 0.77, respectively). This increase in hsCRP and decrease in GSH in case group was statistically significant. We also found the higher basal hsCRP levels in control group as per AHA/CDC study. Conclusion: We observed in this study that Indians without any risk factors for MS have relatively higher CRP levels and are at intermediate risk for cardiovascular disease. It was also observed that as the number of metabolic risk factors increases, the levels of hsCRP increases, and serum GSH decreases. This indicates that more risk factors are associated with higher oxidative stress.

5.
Chinese Journal of Experimental Ophthalmology ; (12): 739-745, 2023.
Article in Chinese | WPRIM | ID: wpr-990907

ABSTRACT

Objective:To investigate the changes of glutathione peroxidase 4 (GPX4) in retinal photoreceptor cells, and the related mechanism correlated with retinal photoreceptor cell damage.Methods:The posterior segment tissues of 8 age-matched male donors were collected from the Body (Organ) Donation Register and Corneal Receiving Station of Tongji Hospital of Wuhan Red Cross from 2018 to 2021, including 4 non-diabetic donors and 4 diabetic donors.The tissues were divided into diabetes group and control group according to their donors.A total of 14 healthy SPF 8-week-old male C57BL/6 mice were selected and randomly divided into diabetes group and control group by the random number method, with 7 mice in each group.The mice in diabetes group were intraperitoneally injected with streptozotocin at a dose of 50 mg/kg for 5 days, and no intervention was given to mice in control group.Mouse photoreceptor cells 661W were divided into advanced glycation end products (AGEs) group and control group.AGEs group was treated with 100 μg/ml AGEs for 24 hours to simulate diabetic injury, and no intervention was given to control group.The outer segment morphology of retinal photoreceptors in human and mouse retinas was observed by hematoxylin-eosin staining.The expressions of glial fibrillary acidic protein (GFAP), rhodopsin and GPX4 in human and mouse retinas were detected by immunofluorescence staining.The expressions of GFAP, rhodopsin and GPX4 in mouse retina and the expression of GPX4 in 661W cells were determined by Western blot.The activity of 661W cells was detected by cell counting kit-8 (CCK8) method.The concentration of malondialdehyde (MDA) in mouse retina and cells was detected by TBA method.The activity of superoxide dismutase (SOD) in mouse retina and cells was detected by hydroxylamine assay.The use of human tissues was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology (No.TJ-C20230301). The animal experiments were conducted with reference to the Standards Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and the study protocol was approved by the Experimental Animal Ethics Committee of Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology (No.TJH-2016001).Results:Hematoxylin-eosin staining showed that retinal photoreceptor outer segments were deformed or broken in diabetic donors and diabetic mice compared with control groups.GFAP fluorescent signal mainly appeared in the inner retina of human and mice, and the stained cells were spindle or polygonal, which was consistent with the shape of glial cells.The retinal GFAP fluorescent signal of diabetic tissue and mouse groups was stronger than that of respective control groups.Rhodopsin was only expressed in the outer segment layer of photoreceptors with clear boundaries, and GPX4 was expressed in the whole retina with strong signal in the outer segment layer of photoreceptors.The fluorescent signals of rhodopsin and GPX4 in diabetic tissue and mouse groups were weaker than those in respective control groups.The relative expressions of GFAP were significantly higher and the relative expressions of rhodopsin and GPX4 were significantly lower in diabetic tissue and mouse groups than in respective control groups (all at P<0.05). The cell viability of AGEs group was significantly lower than that of control group ( t=13.490, P<0.001). The relative expression of GPX4 protein in AGEs group was 0.42±0.12, which was significantly lower than 1.00±0.04 in control group ( t=9.041, P<0.001). MDA concentration was higher and SOD activity was lower in retinal tissue of diabetic mice and AGEs group than those in respective control groups, and the differences were statistically significant (all at P<0.05). Conclusions:Diabetes can reduce the GPX4 level in retinal photoreceptor cells and cause the imbalance of oxidation-antioxidant system, which may be the mechanism of the damage to retinal photoreceptor cells caused by diabetes.

6.
Chinese Journal of Applied Clinical Pediatrics ; (24): 532-537, 2023.
Article in Chinese | WPRIM | ID: wpr-990073

ABSTRACT

Objective:To observe the expression changes of nuclear factor erythroid 2 related factor 2 (Nrf2) and glutathione peroxidase (GPX4) in human pulmonary microvascular endothelial cells (HPMEC) under different experimental conditions, and to explore the role of Nrf2 in inhibiting ferroptosis in the process of alleviating hyperoxic lung injury(HLI).Methods:Hyperoxic model was established by hyperoxia exposure.HPMEC were treated with blank control (control group), oxygen exposure at the concentration of 950 mL/L (hyperoxia group), oxygen exposure at the concentration of 950 mL/L+ 10 μmol/L Ferrostatin (ferroptosis inhibitor group) and oxygen exposure at the concentration of 950 mL/L + 10 μmol/L ML385 (Nrf2 inhibitor group). Cell viability at 24 h and 48 h was tested by the Cell Counting Kit-8 assay, and reactive oxygen species (ROS) levels were detected by a commercial ROS kit.The mRNA and protein levels of Nrf2 and GPX4 were detected by real-time quantitative polymerase chain reaction and Western blot, respectively.Differences were analyzed using the Student′s t-test for a two-group comparison or one-way ANOVA test among groups. Results:(1)Compared with the control group, significantly decreased viability and increased ROS levels were detected in hyperoxia group.Meanwhile, the mRNA (24 h: 0.750±0.010 vs.1.010±0.160, 48 h: 0.690±0.050 vs.1.000±0.070) and protein levels of GPX4 (24 h: 0.160±0.010 vs.0.290±0.010, 48 h: 0.190±0.010 vs.0.250±0.010) at 24 h and 48 h were significantly downregulated, while the mRNA (24 h: 1.740±0.050 vs.1.000±0.050, 48 h: 2.130±0.020 vs.1.000±0.030) and protein levels of Nrf2 (24 h: 0.840±0.010 vs.0.480±0.010, 48 h: 0.840±0.010 vs.0.550±0.030) at 24 h and 48 h were significantly upregulated in hyperoxia group than those of control group (all P<0.05). (2)Compared with the hyperoxia group, significantly increased viability and decreased ROS levels were detected in ferroptosis inhibitor group.Meanwhile, the mRNA (24 h: 1.520±0.110, 48 h: 1.880±0.050) and protein levels of GPX4 (24 h: 0.290±0.010, 48 h: 0.250±0.004) at 24 h and 48 h were significantly upregulated, while the mRNA (24 h: 0.780±0.040, 48 h: 0.760±0.030) and protein levels of Nrf2 (24 h: 0.480±0.010, 48 h: 0.540±0.020) at 24 h and 48 h were significantly downregulated in ferroptosis inhibitor group than those of hyperoxia group (all P<0.05). (3)Compared with the hyperoxia group, significantly decreased viability and increased ROS levels were detected in Nrf2 inhibitor group.Meanwhile, the mRNA (24 h: 0.600±0.030, 48 h: 0.590±0.003) and protein levels of GPX4 (24 h: 0.150±0.001, 48 h: 0.180±0.001) at 24 h and 48 h were significantly downregulated, while the mRNA level of Nrf2 was significantly upregulated at 24 h (3.360±0.130), but downregulated at 48 h (1.430±0.130) (all P<0.05). No significant difference was detected in the protein level of Nrf2 at 24 h and 48 h between hyperoxia group and Nrf2 inhibitor group ( P>0.05). Conclusions:Ferroptosis is involved in the development of HLI, and Nrf2 is able to alleviate hyperoxic lung injury by inhibiting ferroptosis.Therefore, inhibition of ferroptosis by Nrf2 may provide a new therapeutic target for HLI.

7.
Organ Transplantation ; (6): 662-668, 2023.
Article in Chinese | WPRIM | ID: wpr-987116

ABSTRACT

Ferroptosis is a newly-emerged pattern of programmed cell death discovered in recent years, which is defined as iron-dependent programmed necrosis mediated by lipid peroxidation damage. As a conservative procedure, ferroptosis plays a vital role in the development and diseases of multiple organisms including plants and animals. Since ferroptosis was first reported in 2012, growing interests have been diverted to the process of ferroptosis and its role in disease treatment. Ischemia-reperfusion injury is a common pathological process during organ transplantation, and ferroptosis is considered as one of the main patterns inducing ischemia-reperfusion injury. Consequently, the definition, regulatory mechanism and the mechanisms of ferroptosis in ischemia-reperfusion injury after kidney, liver, heart and lung transplantations were reviewed, aiming to provide theoretical basis for the prevention and treatment of ischemia-reperfusion injury in organ transplantation.

8.
Cancer Research on Prevention and Treatment ; (12): 658-665, 2023.
Article in Chinese | WPRIM | ID: wpr-985858

ABSTRACT

Objective To investigate the role and mechanism of the small-molecule inhibitor CIL56 in the death of esophageal squamous cell carcinoma cells. Methods SRB method and plate-cloning method were used to detect the effect of CIL56 on the proliferation of esophageal squamous cell carcinoma. The effect of CIL56 on the migration of esophageal squamous cell carcinoma cells was investigated by scratch-healing test. The effect of CIL56 on the concentration of iron ions in esophageal squamous cell carcinoma was detected with an iron-detection kit. A total glutathione test kit was used to examine the effect of CIL56 on glutathione concentration in esophageal squamous cell carcinoma. Western blot was used to investigate the effect of CIL56 on the expression of xCT and GPX4 proteins related to iron death, as well as YAP1 protein, in esophageal squamous cell carcinoma. Results CIL56 could significantly inhibit the proliferation (P < 0.05) and migration (P < 0.001) of esophageal squamous cell carcinoma. With the increased CIL56 concentration, the iron concentration in esophageal squamous cell carcinoma increased (P < 0.05). CIL56 could reduce the glutathione content in esophageal squamous cell carcinoma (P < 0.01). CIL56 could reduce the expression of xCT and GPX4 proteins related to iron death and decrease the level of YAP1 protein in esophageal squamous cell carcinoma (both P < 0.001). Conclusion The small-molecule inhibitor CIL56 can significantly inhibit the proliferation and migration of esophageal squamous cell carcinoma cells and reduce the expression of the iron-death-related proteins xCT and GPX4, as well as YAP1 protein.

9.
International Eye Science ; (12): 546-550, 2023.
Article in Chinese | WPRIM | ID: wpr-965774

ABSTRACT

AIM: To investigate the occurrence and possible mechanism of blue light-induced ferroptosis in retinal pigment epithelial cells.METHODS: ARPE-19 cells cultured in vitro were irradiated by 405 nm blue light at 50 mW/cm2 irradiance with different duration and were divided into control, 16.3J/cm2, 32.6J/cm2, and 65.2J/cm2 groups; the 65.2J/cm2 group was defined as the high-level blue light irradiation group and cells were further divided into control, high-level blue light irradiation group and high-level blue light irradiation + ferroptosis inhibitor group. CCK-8 assay was used to detect cell viability, commercial kits were used to detect intracellular glutathione(GSH), ferrous iron and malondialdehyde(MDA)concentration, and Western blot was used to detect the relative expression of glutathione peroxidase 4(GPX4)and xCT proteins in cells.RESULTS: The decrease of ARPE-19 cell viability caused by blue light irradiation was dose-dependent, and the reduction of intracellular GSH concentration, the increase of ferrous iron concentration and MDA concentration were all caused by high-level blue light irradiation(all P&#x0026;#x003C;0.05); the ferroptosis inhibitor partially restored cell viability and recovered intracellular GSH, reduced concentrations of MDA and ferrous iron in the blue light irradiation group(all P&#x0026;#x003C;0.05). The relative expressions of GPX4 and xCT proteins were significantly decreased in the blue light irradiation group, and such change was alleviated by the ferroptosis inhibitor(P&#x0026;#x003C;0.05).CONCLUSION: Blue light irradiation may induce ferroptosis in RPE cells by targeting the xCT and GPX4-associated antioxidant pathways.

10.
Journal of Clinical Hepatology ; (12): 89-96, 2023.
Article in Chinese | WPRIM | ID: wpr-960711

ABSTRACT

Objective To investigate the role of glutathione transferase in nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet using the RNA-Seq technique in combination with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes. Methods A total of 14 male C57BL/6J mice were divided into control group with 6 mice and model group with 8 mice by random sampling. The mice in the control group were fed with normal diet, and those in the model group were fed with high-fat diet for 7 consecutive weeks to establish a model of NAFLD. Kits were used to measure the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the level of triglyceride (TG), and HE staining and oil red staining were used to observe liver pathology and deposition of lipid droplets. Liver tissue RNA was extracted for RNA-Seq, and genes with a fold change of ≥2.0 and a P value of 0.05). Compared with the control group, the model group had a significantly higher serum level of TG (2.02±0.50 mmol/L vs 1.00±0.29 mmol/L, t =-4.45, P =0.001). HE staining showed diffuse steatosis and ballooning degeneration in the model group, and oil red staining showed that the model group had a significant increase in orange-red lipid droplets in the cytoplasm of hepatocytes and a significantly higher grade of hepatocyte steatosis than the control group (1.88±0.64 vs 1.00±0.00, t =-3.86, P =0.006). RNA-seq results showed a total of 1367 differentially expressed genes between the two groups, among which there were 608 upregulated genes and 759 downregulated genes, and there were 17 differentially expressed GST genes between the two groups. The top 10 GST genes in terms of fold change were validated, and compared with the control group, the model group had downregulated expression of GSTa2, GSTa3, GSTa4, GSTm1, GSTm2, GSTm3, GSTm4, GSTp1, and GSTo1 and upregulated expression of GSTk1. The results of qRT-PCR were consistent with the results of sequencing. Conclusion GST affects lipid metabolism by participating in various biological processes such as steroid metabolism, fatty acid metabolism, and cholesterol metabolism and is closely associated with the pathogenesis of NAFLD.

11.
Journal of Zhejiang University. Science. B ; (12): 602-616, 2023.
Article in English | WPRIM | ID: wpr-982403

ABSTRACT

Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.


Subject(s)
Male , Mice , Animals , Antioxidants/pharmacology , Blueberry Plants , Anthocyanins/pharmacology , Mice, Inbred C57BL , Superoxide Dismutase , Plant Extracts/pharmacology , Superoxide Dismutase-1
12.
Asian Journal of Andrology ; (6): 404-409, 2023.
Article in English | WPRIM | ID: wpr-981951

ABSTRACT

Male infertility caused by idiopathic oligoasthenospermia (OAT) is known as idiopathic male infertility. Glutathione S-transferase (GST) and fluoride may play important roles in idiopathic male infertility, but their effects are still unknown. Our study examined the relationship between GST polymorphisms and fluoride-induced toxicity in idiopathic male infertility and determined the underlying mechanism. Sperm, blood, and urine samples were collected from 560 males. Fluoride levels were measured by a highly selective electrode method, and GST genotypes were identified using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Semen parameters, DNA fragmentation index (DFI), mitochondrial membrane potential (MMP), and oxidative stress (OS) biomarkers were statistically assessed at the P < 0.05 level. Compared with healthy fertile group, semen parameters, fluoride levels, OS biomarkers, sex hormone levels, and MMP and DFI levels were lower in the idiopathic male infertility group. For glutathione S-transferase M1 (GSTM1[-]) and glutathione S-transferase T1 (GSTT1[-]) or glutathione S-transferase P1 (GSTP1) mutant genotypes, levels of semen fluoride, OS, MMP, and DFI were considerably higher, and the mean levels of sperm parameters and testosterone were statistically significant in GSTM1(+), GSTT1(+), and GSTP1 wild-type genotypes. Both semen and blood fluoride levels were associated with oxidative stress in idiopathic male infertility patients. Elevated fluoride in semen with the genotypes listed above was linked to reproductive quality in idiopathic male infertility patients. In conclusion, GST polymorphisms and fluorine may have an indicative relationship between reproductive quality and sex hormone levels, and OS participates in the development of idiopathic male infertility.


Subject(s)
Humans , Male , Fluorides/adverse effects , Semen , Polymorphism, Genetic , Glutathione Transferase/genetics , Glutathione S-Transferase pi/genetics , Infertility, Male/genetics , Genotype , Biomarkers , Genetic Predisposition to Disease , Case-Control Studies
13.
Journal of Zhejiang University. Science. B ; (12): 115-129, 2023.
Article in English | WPRIM | ID: wpr-971474

ABSTRACT

Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.


Subject(s)
Humans , Antioxidants/metabolism , Ferroptosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Iron Overload/metabolism
14.
Rev. bras. cir. cardiovasc ; 38(6): e20230224, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1514980

ABSTRACT

ABSTRACT Introduction: Objective: To investigate the potential beneficial effects of resveratrol (RVT) against ischemia-reperfusion injury of myocardial tissue during surgical treatment of ruptured abdominal aortic aneurysm. Methods: Four groups were established — control, ischemia/reperfusion (I/R), sham (I/R+solvent/dimethyl sulfoxide [DMSO]), and I/R+RVT. Ruptured abdominal aortic aneurysm model was used as the experimental protocol. Results: In the I/R and I/R+DMSO groups, malondialdehyde (MDA) levels in myocardial tissue were found to be significantly increased compared to the control group. The MDA level in myocardial tissue was significantly decreased in the I/ R+RVT group compared to the I/R group. In I/R and I/R+DMSO groups, glutathione peroxidase (GSH) levels in myocardial tissue were found to be significantly decreased compared to the control group. The GSH level in the myocardial tissue was significantly increased in the I/R+RVT group compared to the I/R group. In the light microscope, isotropic and anisotropic band disorganized atypical cardiomyocytes in the I/R group and degenerative cardiomyocytes and edematous areas in the I/R+DMSO group were observed. Degenerative cardiomyocytes and edematous areas were decreased in the I/R+RVT group. When heart tissue sections incubated with cleaved caspase-3 primary antibodies were examined under the light microscope, apoptotic cardiomyocytes were present in I/R and I/R+DMSO groups. A decrease in the number of apoptotic cardiomyocytes was observed in the I/R+RVT group. Conclusion: The findings of the present study indicate that RVT exhibits protective effects against ischemia-reperfusion injury occurring in the myocardium as a distant organ as a result of abdominal aorta clamping.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-273, 2023.
Article in Chinese | WPRIM | ID: wpr-978472

ABSTRACT

Ulcerative colitis (UC) is a commonly seen digestive system disease with unclear pathogenesis. The condition is complex and variable, often chronic, and has a long treatment period with no specific cure. Currently, the treatment of UC often involves the use of corticosteroids, aminosalicylates, and biologics in western medicine, which provide fast-acting and definite efficacy in the short term. However, with prolonged medication, some patients may develop drug resistance and worsening of the disease, leading to the occurrence of colon cancer. Research has found that oxidative stress is one of the important pathogenic factors in UC and influences its onset and development. Oxidative stress is a state of imbalance between oxidative products and the antioxidant system in the body, characterized by overexpression of oxidative products such as malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), or deficiency of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). It is worth noting that traditional Chinese medicine (TCM), as a unique characteristic medicine of China, has achieved significant efficacy in the treatment of UC. Studies have shown that TCM effectively inhibits the occurrence of UC by suppressing the accumulation of metabolites and antagonizes the development of UC by enhancing the antioxidant system. Therefore, using TCM to regulate the oxidative balance as a diagnostic and therapeutic approach may be a new method and direction for the treatment of UC in the future. Based on the above research, this article summarized the mechanisms of key pathogenic proteins in oxidative stress and the occurrence and development of UC, and compiled the effective ingredients of Chinese medicine, single drugs, prescriptions, and acupuncture and moxibustion in regulating upstream and downstream target proteins of oxidative stress. These interventions can reduce pathological damage to the intestinal mucosa, lower the colon injury index, enrich the intestinal microbiota, increase colon length, and improve clinical symptoms of UC. The article is expected to expand the application of TCM in the treatment of UC and provide a reliable scientific theoretical basis.

16.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 505-510, 2023.
Article in Chinese | WPRIM | ID: wpr-1005815

ABSTRACT

【Objective】 To use hairy enhancer of split 1 (Hes1) to regulate the differentiation of liver epithelial progenitor cells (LEPCs) into cholangiocytes. 【Methods】 The vectors, pTet-on and pTRE2hyg-Hes1, were transfected into LEPCs. The expression of Hes1 was induced by doxycycline (DOX) with different concentrations (0, 0.1, 1, 5, 10, 50, 100 and 500 μg/mL). The expressions of Hes1, molecular markers of hepatocyte and cholangiocyte, glutathione synthetase (Gss), keratin 19 (Krt19) and hepatic nuclear factor 1β (HNF1β) in LEPCs were verified by Western blotting, RT-PCR, Real-time PCR, immunocytochemistry and immunofluorescence. 【Results】 The expression of Hes1 in LEPCs transfected by pTet-on/pTRE2hyg-Hes1 was increased by 11.21 fold when induced by DOX at 10 ug/mL, which drove the LEPCs to differentiate into biliary epithelial cells. With increasing expression of Hes1, cholangiocyte markers, Krt19 and HNF1β, were significantly upregulated, while the hepatocyte marker, Gss, was obviously downregulated. 【Conclusion】 DOX at 10 μg/mL may induce a suitably up-regulated expression of Hes1 in LEPCs double-transfected by pTet-on and pTRE2hyg-Hes1, and the suitable high-expression rather than over-expression of Hes1 can regulate LEPCs to differentiate into cholangiocytes.

17.
Chinese Journal of Nephrology ; (12): 145-149, 2023.
Article in Chinese | WPRIM | ID: wpr-994960

ABSTRACT

Ferroptosis is a recently identified type of non-apoptotic cell death, mainly caused by disruption of cellular metabolic pathways such as iron metabolism and reactive oxygen species metabolism, characterized by intracellular iron overload and reactive oxygen species accumulation leading to lipid peroxidation. Ferroptosis is closely related to renal diseases. The role of ferroptosis in diseases such as acute kidney injury and renal cell carcinoma has been extensively studied, and new discoveries and advances have been made in its relationship with renal fibrosis. The paper systematically reviews the relationship between ferroptosis and renal fibrosis in terms of the latest regulatory mechanisms of ferroptosis and its role in renal fibrosis, and explores the potential clinical application of targeted inhibition of ferroptosis to prevent renal fibrosis.

18.
Chinese Journal of Anesthesiology ; (12): 618-624, 2023.
Article in Chinese | WPRIM | ID: wpr-994241

ABSTRACT

Objective:To evaluate the role of nuclear factor-erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase-4 (GPX4) signaling pathway-mediated ferroptosis in midazolam-induced reduction of hypoxic-ischemic brain damage (HIBD) in neonatal rats.Methods:Ninety healthy 7-day-old neonatal rats, weighing 16-20 g, were divided into 6 groups ( n=15 each) using the random number table method: sham operation group (Sham group), HIBD group, low-dose midazolam (10 mg/kg) group (group L), medium-dose midazolam (20 mg/kg) group (group M), high-dose midazolam (40 mg/kg) group (group H), and Nrf2 inhibitor ML385 group (group I). The HIBD model was developed by ligating the left carotid artery and exposing to a hypoxic condition for 2 h in anesthetized animals. Starting from 2nd day after developing the model, the corresponding doses of midazolam were intraperitoneally injected in midazolam groups, the equal volume of normal saline was intraperitoneally injected in Sham and HIBD groups, midazolam 40 mg/kg and Nrf2 inhibitor ML385 30 mg/kg were intraperitoneally injected once a day for 8 consecutive days in group I. The rats were weighed and subjected to the Morris water maze test after the end of administration. Blood samples were taken from the abdominal aorta after the end of the Morris water maze test, and then the animals were sacrificed to remove the brain for determination of the concentrations of serum iron, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) (by enzyme-linked immunosorbent assay), contents of iron and GSH in hippocampal tissues (by ultraviolet spectrophotometry and micro method), the number of Nrf2/neuronal nuclear antigen (NeuN) and GPX4/NeuN positive cells (by immunofluorescent staining), and expression of Nrf2, GPX4, and 4-hydroxynonaenoic acid (4-HNE) in hippocampal tissues and for microscopic examination of the pathological changes of hippocampal neurons in brain tissues (after HE staining and Nissl staining). Results:Compared with Sham group, the first time to arrival at platform was significantly prolonged, the number of crossing the origional platform was reduced, and the time of staying at the target quadrant was shortened, the iron content in the hippocampal tissues was increased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were decreased, the expression of Nrf2 and GPX4 was down-regulated, the expression of 4-HNE was up-regulated, the concentrations of serum iron, IL-6 and TNF-α were increased, and the injury to hippocampal neurons was marked in HIBD group ( P<0.05). Compared with HIBD group, the first time to arrival at platform was significantly shortened, the number of crossing the origional platform was increased, and the time of staying at the target quadrant was prolonged, the iron content in the hippocampus tissues was decreased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were increased, the expression of Nrf2 and GPX4 was up-regulated, the expression of 4-HNE was down-regulated, the concentrations of serum iron, IL-6 and TNF-α were decreased ( P<0.05), and the injury to hippocampal neurons was significantly reduced in H, M and L groups. Compared with group H, the first time to arrival at platform was significantly prolonged, the number of crossing the origional platform was reduced, and the time of staying at the target quadrant was shortened, the iron content in the hippocampus tissue was increased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were decreased, the expression of Nrf2 and GPX4 was down-regulated, the expression of 4-HNE was up-regulated, the concentrations of serum iron, IL-6 and TNF-α were increased ( P<0.05), and the injury to hippocampal neurons was aggravated in group I. Conclusions:The mechanism by which midazolam reduces HIBD may be related to activation of the Nrf2/GPX4 signaling pathway and inhibition of hippocampal neuronal ferroptosis in neonatal rats.

19.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 584-591, 2023.
Article in Chinese | WPRIM | ID: wpr-992137

ABSTRACT

Objective:To explore the effect and mechanism of diosmetin (Dio) on neuronal ferroptosis in rats with bacterial meningitis (BM).Methods:Male SD rats aged 6-7 weeks of SPF grade were selected for the experiment. The BM model was established by injecting group B hemolytic streptococcus into the cisterna magna of cerebellum. Sixty BM model rats were successfully modeled and divided into model group, low-dose Dio group, medium-dose Dio group, high-dose Dio group and inhibitor group according to the random number table method, with 12 rats in each group. Another 12 weight-matched rats were taken as the control group.The rats in the low-dose Dio group, medium-dose Dio group, high-dose Dio group and the inhibitor group were intragastrically administered with Dio at 50 mg/kg, 100 mg/kg, 200 mg/kg and 200 mg/kg, respectively. The rats in the control group were intragastrically administered with an equal volume of 0.9 % sodium chloride solution. On the day of intragastric administration, the rats in the inhibitor group were intraperitoneally injected with SIRT1 pathway inhibitor EX527 (10 mg/kg), and the rats in the other groups were injected with an equal volume of 0.9% sodium chloride solution. The above interventions were performed once a day for 28 consecutive days. Loeffler neurological score was used to evaluate the neurological impairment in rats. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in cerebrospinal fluid of rats were detected by ELISA. The number of white blood cells in cerebrospinal fluid was detected by a blood cell analyzer. Glutathione (GSH) was detected by micro-enzyme labeling method, malondialdehyde (MDA) was detected by thiobarbituric acid colorimetric method, reactive oxygen species(ROS) was detected by colorimetry, and Fe 2+ level was detected by ferrozine method. Hematoxylin-eosin staining, Prussian blue staining and TUNEL staining were used to observe the pathological damage, iron accumulation and apoptosis in the hippocampus, respectively.Western blot was applied to measure the expression of transferrin (Tf), proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (Bax), caspase-3 and SIRT1/Nrf2/HO-1/Gpx4 signaling pathway proteins. Graphpad Prism 9.0 was used for data analysis. One-way ANOVA was used for statistical analysis, and SNK- q test was used for further pairwise comparisons. Results:(1) There was a statistically significant difference in neurological function scores among the 6 groups of rats ( F=125.451, P<0.001). The neurological function score of the model group was lower than that of control group, while the neurological function scores of the low-dose Dio group, medium-dose Dio group, and high-dose Dio group were higher than those of the model group (all P<0.05). The neurological function score of the inhibitor group ((2.57±0.26)) was lower than that of high-dose Dio group ((4.34±0.48)) ( P<0.05). (2) There were statistically significant differences in the levels of IL-6, TNF-α and the number of white blood cells in the cerebrospinal fluid of rats among the 6 groups ( F=127.817, 102.413, 180.967, all P<0.001). The levels of IL-6, TNF-α and the number of white blood cells in model group were higher than those of control group(all P<0.05). The levels of IL-6, TNF-α and the number of white blood cells in low-dose Dio group, medium-dose Dio group and high-dose Dio group were lower than those of model group (all P<0.001), and those in inhibitor group were all higher than those in high-dose Dio group(all P<0.001). (3) There were statistically significant differences in iron deposition rate and neuronal apoptosis rate among the 6 groups of rats ( F=90.857, 88.835, both P<0.001). The iron deposition rate ((18.37±3.14)%) and neuronal apoptosis rate ((27.58±2.63)%) in the inhibitor group were higher than those in the high-dose Dio group ((6.35±1.08)%, (14.02±1.87)%) (both P<0.05). (4) The levels of GSH, ROS, MDA, and Fe 2+ in the hippocampus of the 6 groups of rats showed statistically significant differences ( F=54.465, 106.453, 55.969, 105.457, all P<0.001). The GSH content in the inhibitor group ((103.48±8.76) mmol/g) was lower than that in the high-dose Dio group ((133.97±10.54) mmol/g), while the contents of ROS, MDA, Fe 2+ ((225.17±16.32) μmol/mg, (10.73±1.58) μmol/mg, (62.71±5.43) μg/g) were higher than those of the high-dose Dio group ((131.87±11.67) μmol/mg, (4.35±0.87) μmol/mg, (34.86±2.95) μg/g) (all P<0.05). (5)There were statistically significant differences in the protein levels of Tf, PCNA, Bax, caspase-3, SIRT1, Nrf2, HO-1 and Gpx4 in the hippocampus of the 6 groups of rats ( F=120.179, 107.568, 157.265, 98.031, 90.932, 52.283, 59.424, 114.539, all P<0.001). The protein levels of Tf, Bax and caspase-3 in the hippocampus of inhibitor group were higher than those of the high-dose Dio group, while the protein levels of PCNA, SIRT1, Nrf2, HO-1, Gpx4 were lower than those of the high-dose Dio group (all P<0.05). Conclusion:Diosmetin can activate SIRT1/Nrf2/HO-1/Gpx4 signaling pathway, thereby inhibiting neuronal ferroptosis in BM rats.

20.
Chinese Journal of Primary Medicine and Pharmacy ; (12): 719-723, 2023.
Article in Chinese | WPRIM | ID: wpr-991813

ABSTRACT

Objective:To investigate the clinical efficacy of neuroendoscopic hematoma removal versus soft channel drainage in the treatment of chronic subdural hematoma. Methods:The clinical data of 102 patients with chronic subdural hematoma who received treatment in Jincheng People's Hospital from May 2018 to May 2020 were retrospectively analyzed. They were divided into the neuroendoscopy group ( n = 50) and the soft channel group ( n = 52) according to different surgical methods. Perioperative indexes, hematoma clearance rate, China Stroke Scale score, the activity of daily living score, and oxidative stress indexes were compared between the two groups. All patients were followed up for 3 months. The incidence of complications during the follow-up period was calculated. Results:The retention time of the drainage tube in the neuroendoscopy group was shorter than that in the soft channel group [(2.45 ± 0.63) days vs. (3.30 ± 0.78) days, t = 6.06, P < 0.001]. The length of hospital stay in the neuroendoscopy group was shorter than that in the soft channel group [(7.14 ± 1.65) days vs. (9.07 ± 2.11) days, t = 5.15, P < 0.001]. The hematoma clearance rate at postoperative 7 days in the neuroendoscopy group was higher than that in the soft channel group [(93.45 ± 5.50)% vs. (81.86 ± 7.24)%, χ2 = 9.12, P < 0.001]. There were no significant differences in operation time and intraoperative blood loss between the two groups (both P > 0.05). At postoperative 30 days, the China Stroke Scale score in the neuroendoscopy group was lower than that in the soft channel group [(12.74 ± 2.23) points vs. (18.67 ± 2.45) points, t = 12.79, P < 0.001]. The activity of daily life score in the neuroendoscopy group was significantly higher than that in the soft channel group [(77.69 ± 7.11) points vs. (91.35 ± 7.25) points, t = 9.60, P < 0.001]. At postoperative 7 days, glutathione peroxidase level in the neuroendoscopy group was significantly lower than that in the soft channel group [(130.75 ± 13.66) U/L vs. (148.60 ± 14.64) U/L, t = 6.37, P < 0.001]. Malondialdehyde level in the neuroendoscopy group was significantly lower than that in the soft channel group [(5.11 ± 0.65) nmol/L vs. (6.19 ± 0.74) nmol/L, t = 7.83, P < 0.001]. Superoxide dismutase level in the neuroendoscopy group was significantly higher than that in the soft channel group [(275.60 ± 22.33) U/L vs. (254.60 ± 18.55) U/L, t = 5.15, P < 0.001]. There was no significant difference in the incidence of complications between the two groups ( P > 0.05). Conclusion:Compared with soft channel drainage, neuroendoscopic hematoma removal can obtain better short-term curative effects and less oxidative stress response in the treatment of chronic subdural hematoma. Neuroendoscopic hematoma removal does not increase the incidence of postoperative complications and is highly safe.

SELECTION OF CITATIONS
SEARCH DETAIL